

Alcohol Free Hand & Skin Sanitizer

Q What is Defensive™ Alcohol-Free, Foaming Hand & Skin Sanitizer?

A Defensive™ Alcohol-Free, Foaming Hand & Skin Sanitizer, based on the active ingredient Benzalkonium chloride, is a unique, Patented formulation featuring exceptional skin feel, conditioning and moisturizing properties. The efficacy of this product has been confirmed to reduce S. aureus 99.999% in as little as 15 seconds. Because we do not use ethyl alcohol, our product is non-flammable and non-drying to the skin. In addition, unlike alcohol-based products, Defensive™ does not require polymers or thickeners and as a result your skin does not feel sticky and your pores do not become clogged. Defensive™ Foaming Hand & Skin Sanitizer is in compliance with the FDA Final Tentative Monograph for OTC Hand Sanitizer preparations (leave-on sanitizers not requiring a rinse). Defensive™ Foaming Hand & Skin Sanitizer is shipped from our FDA Registered Establishment. Defensive™ Foaming Hand & Skin Sanitizer is NSF Registered and Approved under Category E3 for Food Handlers and is effective on MRSA & CA-MRSA.

Q Why Benzalkonium chloride-based Hand Sanitizers?

A Benzalkonium chloride-based Hand Sanitizers have distinct advantages over gelled alcohol hand sanitizers. While both product forms are FDA Monograph for "leave on" products, fast acting and allow for use without water or towels, Benzalkonium chloride based products are non-flammable, less drying to skin, and will not stain clothing. Published studies report that gelled alcohol gel hand sanitizers actually make the skin more contaminated, not cleaner, due to removal of protective natural skin oils and entrapment of dead skin cells by the polymer thickeners used in the gelled alcohol products. Benzalkonium chloride is a quaternary active ingredient with a history of use in leave-on, FDA Monograph anti-bacterial skin treatment products. Leave-on Hand Sanitizers should not be used as a substitute for proper hand washing and hygiene practices.

Q What makes Defensive™ Alcohol-Free, Foaming Hand & Skin Sanitizer unique?

A Patented Defensive™ Alcohol-Free, Foaming Hand & Skin Sanitizer produces a fast drying, non-sticky foam that contains unique conditioning and moisturizing ingredients, leaves the skin with a soft, silky after-feel, and does not contain polymer thickeners or silicones.

Q How Safe is Defensive[™] Alcohol-Free, Foaming Hand & Skin Sanitizer?

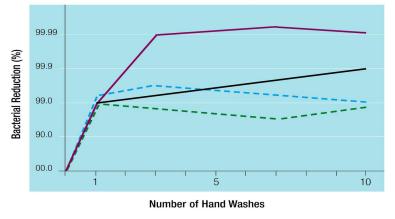
A Defensive[™] Alcohol-Free, Foaming Hand & Skin Sanitizer is very effective at reducing bacteria on the skin, yet very gentle on the skin and eyes as the Toxicity Profile below indicates:

Toxicity Profile for Foaming Hand & Skin Sanitizer					
Acute Oral LD50	>5.0 g/kg, Category IV				
Acute Dermal LD50	>2.0 g/kg, Category III				
Eye Irritation	Category III				
Skin Irritation	Category IV				
Sensitization	Not a Skin Sensitizer				

Q What are the affects of long-term, repeated use?

A In published studies, Benzalkonium chloride based Hand Sanitizers outperform alcohol-based products for long-term effectiveness. Alcohol-based products evaporate very quickly and are no longer effective after they are dry. Benzalkonium chloride remains active on the surface of the skin, continuing to kill bacteria for hours. Defensive™ Foam Hand & Skin Sanitizer actually gets better with repeated use!

Q What about efficacy?


A Defensive[™] Foam Hand & Skin Sanitizer is very effective against a broad range of pathogenic bacteria in as little as 15 seconds as the Chlorine Equivalency and Time Kill Data illustrate (see Pages 3-4).

Q Don't hand sanitizers increase the likelihood of antibiotic resistance?

A Defensive™ Foam Hand & Skin Sanitizer is a broad-spectrum sanitizer with efficacy proven across a wide range of bacteria. Unlike antibiotics, topical sanitizers do not attempt to selectively eliminate only certain bacteria. The active ingredient causes the cell wall to lose electromagnetic bonds – rupturing the cell wall. This is very important because most in the medical community today believe that the recent proliferation of the "super bugs" and the anti-biotic resistant strains of bacteria are directly a result of this attempt to be selective in the elimination of some bacteria while sparing others. Defensive™ Foam Hand & Skin Sanitizer is designed to eliminate all bacteria on the skin. While some useful or harmless bacteria may be removed, this is essential in preventing mutations into "super bugs".

Active Ingredient Effectiveness*

Benzalkonium Chloride vs. Ethyl Alcohol

FDA Minimum Standard
Benzalkonium Chloride
- - - 62% Ethyl Alcohol
- 70% Ethyl Alcohol

*SOURCE: AORN Journal, August 1998

Benzalkonium Chloride, a quaternary ammonium compound used for decades as a topical anti-microbial, is proven to be effective against a wide range of bacteria, fungi and viruses such as Staph, E. Coli, Athlete's Foot Fungus, Influenza, HIV and Hepatitus.

Q Any special handling considerations?

A Defensive[™] Foam Hand & Skin Sanitizer is a stable, water-based system. Care should be taken to avoid freezing. The shelf life of the product exceeds 24 months if kept in moderate conditions.

O Is there a Time Kill Study for Defensive™ Foam Hand & Skin Sanitizer?

•	
Δ	

rganism	Test Population Control (CFU/mL)	Number of Survivors	% Reduction	Log Reduction
his study is designed to examine the rate of kill of a test sub duction and log reduction of the test organism. Exposure tin		n with a test orgai	nism. Results are exp	ressed in percent
ampylobacter jejuni ATCC 29428	1.02 x 10 ⁷	$< 1.0 \times 10^{2}$	> 99.999	> 5.00 Log ¹⁰
andida albicans FCC 10231	1.60 x 10 ⁵	6.0 x 10 ³	96.30	1.42 Log ¹⁰
ostridium difficile (C. Diff. Veg) ATCC 9689	3.40 x 10 ⁶	< 2.0	> 99.9999	> 6.20 Log ¹⁰
nterococcus faecalis (VRE) ATCC 51575 (Vancomycin Resistant)	1.12 x 10 ⁶	3.2 x 10 ¹	99.99	4.54 Log ¹⁰
scherichia coli ATCC 11229	3.80 x 10 ⁶	4.0	99.999	6.00 Log ¹⁰
scherichia coli 0157:H7 ATCC 35150	1.26 x 10 ⁶	< 2.0	> 99.999	> 5.80 Log ¹⁰
ebsiella pneumoniae ATCC 4352	1.10 x 10 ⁶	2.0	99.999	5.70 Log ¹⁰
ebsiella pneumoniae (NDM-1 positive) CDC 1000527 ("New Delhi" superstrain)	7.40 x 10 ⁵	< 5.0	> 99.9999	> 5.20 Log ¹⁰
steria monocytogenes ATCC 19117	4.70 x 10 ⁶	1.9 x 10 ³	99.90	3.39 Log ¹⁰
seudomonas aeruginosa ATCC 15442	3.50 x 10 ⁶	< 2.0	99.9999	> 6.20 Log ¹⁰
almonella choleraesuis serotype enteritidis ATCC 4931	6.80 x 10 ⁵	2.0	> 99.999	> 5.50 Log ¹⁰
almonella choleraesuis serotype paratyphi ATCC 8759	5.60 x 10 ⁵	< 2.0	> 99.999	> 5.50 Log ¹⁰
almonella choleraesuis serotype pullorum ATCC 19945	8.90 x 10 ⁵	< 2.0	> 99.999	> 5.70 Log ¹⁰
almonella choleraesuis serotype typhimurium ATCC 23564	7.70 x 10 ⁵	6.0	> 99.999	> 5.10 Log ¹⁰
almonella typhi ATCC 6539	1.27 x 10 ⁶	2.0	99.999	> 5.80 Log ¹⁰
nigella dysenteriae ATCC 13313	1.30 x 10 ⁶	< 2.0	> 99.999	5.80 Log ¹⁰
nigella flexneri ATCC 12022	1.39 x 10 ⁶	2.8 x 10 ¹	99.99	4.69 Log ¹⁰
nigella sonnei ATCC 25931	2.43 x 10 ⁷	< 2.0 x 10 ¹	99.9999	6.09 Log ¹⁰
aphylococcus aureus ATCC 6538	6.70 x 10 ⁶	< 2.0	> 99.9999	> 6.53 Log ¹⁰
aphylococcus aureus (MRSA) ATCC 33592 (Methicillin Resistant, aka HA-MRSA)	1.23 x 10 ⁷	3.8 x 10 ³	> 99.9	3.51 Log ¹⁰
aphylococcus aureus (CA-MRSA) Community Acquired Methicillin Resistant (USA 400)	1.18 x 10 ⁶	5.8 x 10 ²	> 99.9	> 3.30 Log ¹⁰

Q

Is there a Time Kill Study for Defensive™ Foam Hand & Skin Sanitizer? (continued)

A

Organism	Test Population Control (CFU/mL)	Number of Survivors	% Reduction	Log Reduction				
This study is designed to examine the rate of kill of a test substance after inoculation with a test organism. Results are expressed in percent reduction and log reduction of the test organism. Exposure time = 15 seconds.								
Staphylococcus epidermidis ATCC 12228	7.20 x 10 ⁵	< 2.0	99.999	> 5.56 Log ¹⁰				
Streptococcus pneumonia ATCC 6305	6.40 x 10 ⁵	< 2.0	> 99.999	> 5.51 Log ¹⁰				
Streptococcus pyogenes ATCC 19615	1.77 x 10 ⁶	< 2.0	> 99.999	> 5.90 Log ¹⁰				
Vibrio cholera ATCC 11623	4.70 x 10 ⁵	< 2.0	> 99.999	> 5.40 Log ¹⁰				
Xanthomonas axonopodis ATCC 49118 (Citrus Canker)	1.28 x 10 ⁶	3.6 x 10 ¹	> 99.99	4.55 Log ¹⁰				
Yersinia enterocolitica ATCC 23715	2.23 x 10 ⁶	3.8 x 10 ¹	99.99	4.77 Log ¹⁰				

What sizes are available?

- \mathbf{A}
- 50 mL (1.7 oz.) Personal Size: Approximately 120 uses per bottle and is TSA Compliant.
- 210 mL (7.1 oz) Family/Group Size: Approximately 500 uses per bottle.
- 1000 mL (33.8oz.) Wall Dispenser: Approximately **2400** uses per replaceable cartridge.

Q What are some key product features?

- A
- More than 3 times yield over alcohol based gel sanitizers... 60+ Uses per ounce vs. 15 uses per ounce.
- Non-Drying and Sting Free
- Residual Efficacy
- Non-Flammable
- No-Drip Foam
- Better Value

